Electrical Flow FieldModule: devtests.bidomain.electric_flow_field.run
Section author: Anton Prassl <anton.prassl@medunigraz.at> and Gernot Plank <gernot.plank@medunigraz.at>
Fig. 13 Experimental setup to validate the electrical flow field.

![Conductivity\, G &= \sigma \cdot \frac{A}{l} = 1[\frac{S}{m}] \cdot \frac{1[mm^2]}{1[mm]} = 1\left[ \frac{S}{m} \right] \cdot 1[mm] = 1mS\\
Resistance\, R &= \frac{1}{G} = 1 k\Omega](../../_images/math/bc724b4f2fd42af1c463eb89a53d07a5d21b811b.png)
![E_x &= \frac{1[V]}{1[mm]} \vec{e_x} = \frac{1000[mV]}{10^3[\mu m]} \vec{e_x} = 1\left[ \frac{mV}{\mu m}\right] \vec{e_x} \\
\vec{E} &= \begin{bmatrix} 1 \\
0 \\
0
\end{bmatrix} \left[\frac{mV}{\mu m} \right] \\](../../_images/math/c1951bbddaa3fbbcc821030c66b3066fec65aa7b.png)
![\vec{J} &= \begin{bmatrix} \sigma\, 0\, 0 \\
0\, \sigma\, 0\\
0\, 0\, \sigma
\end{bmatrix}
\begin{bmatrix} E_x \\
E_y \\
E_z
\end{bmatrix} =
\begin{bmatrix} E_x \\
0\\
0
\end{bmatrix}
\left[\frac{S}{m} \cdot \frac{mV}{\mu m} \right] \\
J_x &= 1 \left[ \frac{S}{m} \right] \cdot 1 \left[ \frac{mV}{\mu m} \right] = 1 \left[ \frac{10^3 mS}{10^6 \mu m} \right] \cdot 1 \left[ \frac{mV}{\mu m} \right] = 10^{-3} \left[ \frac{\mu A}{\mu m^2} \right]](../../_images/math/75556107e24e0d932cb0075678d04b455d81901b.png)
![I = U \cdot G = 1[V] \cdot 1[mS] = 1 mA](../../_images/math/3359854b387927151d168304af577981e7c9fcf0.png)
![P = U \cdot I = 1[V] \cdot 1[mA] = 1 mW](../../_images/math/5d20f6ea9b02dfa0b815277cd97b922d4dd12140.png)
![Power Density = P / V = \frac{1 [mW]}{1 [mm^3]} = 1 \left[ \frac{mW}{mm^3} \right]](../../_images/math/a2415494e56dc1d8905b74d3dda46c27c524bf59.png)
Solve Laplace’s equation on a 1mm cube and compare
,
and
against reference.
Checks:
Last run: 2024-02-29 00:12:10.865754, revision {‘base’: ‘cbf8efd0’}, dependency revisions {PT_C: 31642c1e,cvsys: 593686bc,eikonal: 5fbbfda3,elasticity: 4d92ddfc}
Runtime: 0:00:00.605489
ALL PASSED
PASS max_error(phie.igb): 0.0
PASS max_error(PostProcess/E_field.igb): 0.0
PASS max_error(PostProcess/J_field.igb): 0.0
Solve Laplace’s equation on a 1mm cube and compare
,
and
against reference.
Checks:
Last run: 2024-02-29 00:12:11.509337, revision {‘base’: ‘cbf8efd0’}, dependency revisions {PT_C: 31642c1e,cvsys: 593686bc,eikonal: 5fbbfda3,elasticity: 4d92ddfc}
Runtime: 0:00:00.515709
ALL PASSED
PASS max_error(phie.igb): 0.0
PASS max_error(PostProcess/E_field.igb): 0.0
PASS max_error(PostProcess/J_field.igb): 0.0